Skip to contents

This article discuss differences between the first version of HaDeX (Puchała et al. 2020), and the current version of the package and web-server. As the second version is significantly more complex than the previous one, we ultimately decided against expanding the first version. Instead we created a new entity. But how are they different?

Methods of visualization

Let’s start by discussing methods of visualization available in the packages and web-servers:

plot_type HaDeX HaDeX2
comparison TRUE TRUE
woods TRUE TRUE
uptake curve TRUE TRUE
diff uptake curve FALSE TRUE
butterfly FALSE TRUE
diff butterfly FALSE TRUE
chiclet FALSE TRUE
diff chiclet FALSE TRUE
heatmap FALSE TRUE
diff heatmap FALSE TRUE
3D structure FALSE TRUE
volcano FALSE TRUE
manhattan FALSE TRUE
uncertainty FALSE TRUE
coverage TRUE TRUE
coverage heatmap FALSE TRUE
measurement variablity FALSE TRUE
mass uptake curve FALSE TRUE

Web-server features

Let’s see how the features in web-servers differ.

option HaDeX HaDeX2
tooltips TRUE TRUE
helpers TRUE TRUE
tabular data TRUE TRUE
times next to each other FALSE TRUE
export to external tools FALSE TRUE

In the table there are shortened names. Tabular data means that the tabular data is available for the plot. Times next to each other means the option of showing all time point data in two forms: one plot or smaller plots next to each other for time point separately. Export to external tools means an option to download data for tools such as HDXViewer or ChimeraX.

Moreover, in HaDeX2 more visualization options are available.

Package functions

Finally, let’s take a look at package functions from HaDeX2 and see if there is a similar function in HaDeX (even under different name):

HaDeX2 HaDeX
add_stat_dependency add_stat_dependency
calculate_aggregated_diff_uptake NA
calculate_aggregated_test_results NA
calculate_aggregated_uptake NA
calculate_auc NA
calculate_back_exchange NA
calculate_confidence_limit_values calculate_confidence_limit_values
calculate_diff_uptake NA
calculate_exp_masses NA
calculate_exp_masses_per_replicate NA
calculate_kinetics calculate_kinetics
calculate_MHP NA
calculate_p_value NA
calculate_peptide_kinetics NA
calculate_state_uptake NA
create_aggregated_diff_uptake_dataset NA
create_aggregated_uptake_dataset NA
create_control_dataset NA
create_diff_uptake_dataset NA
create_kinetic_dataset NA
create_overlap_distribution_dataset NA
create_p_diff_uptake_dataset NA
create_p_diff_uptake_dataset_with_confidence NA
quality_control_dataset NA
create_replicate_dataset NA
create_state_comparison_dataset NA
create_state_uptake_dataset calculate_state_deuteration
create_uptake_dataset NA
get_n_replicates NA
get_peptide_sequence NA
get_protein_coverage NA
get_protein_redundancy NA
get_replicate_list_sd NA
get_residue_positions NA
get_structure_color NA
HaDeX_GUI HaDeX_gui
HaDeXify NA
install_GUI NA
plot_aggregated_differential_uptake NA
plot_aggregated_uptake NA
plot_aggregated_uptake_structure NA
plot_amino_distribution NA
plot_butterfly NA
plot_chiclet NA
plot_coverage plot_coverage
plot_coverage_heatmap NA
plot_differential woods_plot
plot_differential_butterfly NA
plot_differential_chiclet NA
plot_differential_uptake_curve NA
plot_manhattan NA
plot_overlap NA
plot_overlap_distribution plot_position_frequency
plot_peptide_charge_measurement NA
plot_peptide_mass_measurement NA
plot_position_frequency NA
plot_quality_control NA
plot_replicate_histogram NA
plot_replicate_mass_uptake NA
plot_state_comparison comparison_plot
plot_uncertainty NA
plot_uptake_curve plot_kinetics
plot_volcano NA
prepare_hdxviewer_export NA
read_hdx read_hdx
reconstruct_sequence reconstruct_sequence
show_aggregated_uptake_data NA
show_coverage_heatmap_data NA
show_diff_uptake_data NA
show_diff_uptake_data_confidence NA
show_overlap_data NA
show_p_diff_uptake_data NA
show_peptide_charge_measurement NA
show_peptide_mass_measurement NA
show_quality_control_data NA
show_replicate_histogram_data NA
show_summary_data NA
show_uc_data NA
show_uptake_data NA
update_hdexaminer_file NA

For pairs of functions, we can conduct the analysis of speed using our exemplary data.

Calculation speeds compared

For each pair of functions in the previous section, we can assess relative execution speed using the exemplary dataset as a controlled reference for comparison. We concentrate on six major tasks: reading data file, plotting (and preparing data) uptake curve for one peptide, comparison plot of two biological states, differential Woods plot with difference between two states, reconstruction of the protein sequence and computation of confidence limits.

Code used to create this comparison is shown below, and then the results are presented in a comprehensive form.

library(HaDeX)

dat_HaDeX <- HaDeX::read_hdx(system.file(package = "HaDeX2", "HaDeX/data/alpha.csv"))
dat_HaDeX2 <- HaDeX2::read_hdx(system.file(package = "HaDeX2", "HaDeX/data/alpha.csv"))

version_benchmark <- microbenchmark(
  list = alist(`HaDeX_1. Read input` = HaDeX::read_hdx(system.file(package = "HaDeX2", 
                                                                   "HaDeX/data/alpha.csv")),
               `HaDeX2_1. Read input` = HaDeX2::read_hdx(system.file(package = "HaDeX2", 
                                                                     "HaDeX/data/alpha.csv")),
               `HaDeX_2. Plot uptake curve` = {
                 HaDeX::calculate_kinetics(dat = dat_HaDeX, 
                                           sequence = "GFGDLKSPAGL",      
                                           state = "Alpha_KSCN", 
                                           start = 1, end = 11, 
                                           time_in = 0, time_out = 1440) %>%   
                   HaDeX::plot_kinetics(kin_dat = .)},
               `HaDeX2_2. Plot uptake curve` = {
                 HaDeX2::calculate_peptide_kinetics(dat = dat_HaDeX2,
                                                    sequence = "GFGDLKSPAGL",
                                                    state = "Alpha_KSCN",
                                                    start = 1, end = 11,
                                                    time_0 = 0, time_100 = 1440) %>%
                   HaDeX2::plot_uptake_curve(uc_dat = .)},
               `HaDeX_3. Plot comparison` = {
                 HaDeX::prepare_dataset(dat = dat_HaDeX, 
                                        in_state_first = "Alpha_KSCN_0",      
                                        chosen_state_first = "Alpha_KSCN_1", 
                                        out_state_first = "Alpha_KSCN_1440",      
                                        in_state_second = "ALPHA_Gamma_0", 
                                        chosen_state_second = "ALPHA_Gamma_1",      
                                        out_state_second = "ALPHA_Gamma_1440") %>%
                   HaDeX::comparison_plot(calc_dat = ., 
                                          theoretical = FALSE,      
                                          relative = TRUE, 
                                          state_first = "Alpha_KSCN", 
                                          state_second = "ALPHA_Gamma")},
               `HaDeX2_3. Plot comparison` = {
                 HaDeX2::create_state_comparison_dataset(dat = dat_HaDeX2,
                                                         states = c("Alpha_KSCN", 
                                                                    "ALPHA_Gamma"),
                                                         time_0 = 0, time_100 = 1440) %>%
                   HaDeX2::plot_state_comparison(uptake_dat = .,
                                                 theoretical = FALSE,
                                                 fractional = TRUE,
                                                 time_t = 1)},
               `HaDeX_4. Plot Woods` = {
                 HaDeX::prepare_dataset(dat = dat_HaDeX, 
                                        in_state_first = "Alpha_KSCN_0",      
                                        chosen_state_first = "Alpha_KSCN_1", 
                                        out_state_first = "Alpha_KSCN_1440",      
                                        in_state_second = "ALPHA_Gamma_0", 
                                        chosen_state_second = "ALPHA_Gamma_1",      
                                        out_state_second = "ALPHA_Gamma_1440") %>%
                   HaDeX::woods_plot(calc_dat = ., 
                                     theoretical = FALSE,      
                                     relative = TRUE, 
                                     confidence_limit = 0.98, 
                                     confidence_limit_2 = 0.98)},
               `HaDeX2_4. Plot Woods` = {
                 HaDeX2::calculate_diff_uptake(dat = dat_HaDeX2,
                                               states = c("Alpha_KSCN", "ALPHA_Gamma"),
                                               time_t = 1, time_0 = 0, time_100 = 1440) %>%
                   HaDeX2::plot_differential(diff_uptake_dat = .,
                                             time_t = 1,
                                             theoretical = FALSE,
                                             fractional = TRUE,
                                             show_houde_interval = TRUE,
                                             confidence_level = 0.98)},
               `HaDeX_5. Calculate confidence limit` = {
                 HaDeX::prepare_dataset(dat = dat_HaDeX, 
                                        in_state_first = "Alpha_KSCN_0",      
                                        chosen_state_first = "Alpha_KSCN_1", 
                                        out_state_first = "Alpha_KSCN_1440",      
                                        in_state_second = "ALPHA_Gamma_0", 
                                        chosen_state_second = "ALPHA_Gamma_1",      
                                        out_state_second = "ALPHA_Gamma_1440") %>%
                   HaDeX::calculate_confidence_limit_values(calc_dat = .,
                                                            confidence_limit = 0.98,
                                                            theoretical = FALSE,
                                                            relative = TRUE)},
                `HaDeX2_5. Calculate confidence limit` = {
                 HaDeX2::calculate_diff_uptake(dat = dat_HaDeX2,
                                               states = c("Alpha_KSCN", "ALPHA_Gamma"),
                                               time_0 = 0, time_100 = 1440, time_t = 1) %>%
                   HaDeX2::calculate_confidence_limit_values(diff_uptake_dat = .,
                                                             confidence_level  = 0.98,
                                                             theoretical = FALSE,
                                                             fractional = TRUE)},
               `HaDeX_6. Reconstruct sequence` = HaDeX::reconstruct_sequence(dat = dat_HaDeX),
               `HaDeX2_6. Reconstruct sequence` =  HaDeX2::reconstruct_sequence(dat = dat_HaDeX2)
               
               )
)

The microbenchmark package operates by executing each command 100 times and summarizing the resulting execution times in milliseconds. The results are then presented side by side in graphical form to facilitate a direct and intuitive comparison across commands.

All the tasks are completed significantly faster when using HaDeX2.

Below, we present the summary of numeric values used to create this plot (in milliseconds):

task HaDeX HaDeX2 Runtime ratio
1. Read input 34.83070 28.86460 0.8287115
2. Plot uptake curve 171.86675 65.38155 0.3804200
3. Plot comparison 186.86305 59.34140 0.3175663
4. Plot Woods 201.53030 77.75905 0.3858430
5. Calculate confidence limit 172.91570 53.16090 0.3074383
6. Reconstruct sequence 24.18105 15.78765 0.6528935

Across all tasks, the reported values represent a runtime ratio (HaDeX2/HaDeX) consistently below one, indicating that HaDeX2 is faster than HaDeX for every measured operation. The strongest speedups, corresponding to the lowest ratios, are observed for plotting functions, calculating confidence limits, and plotting uptake curves, whereas input reading and sequence reconstruction show comparatively smaller, though still meaningful, reductions in execution time. In the case of input reading, the modest speed-up results from the fact that this functionality has substantially expanded in-built quality control in HaDeX2, where additional validation steps intentionally constrain maximal speed in favor of improved data integrity.

HaDeX2 design

The first version of HaDeX was developed quickly to address immediate data analysis challenges. As knowledge in the field expanded, it became necessary to extend the package’s functionality. This required a carefully planned redesign. The package is now built from small, modular computing blocks—encapsulated functions that each perform a single task. Datasets are created by combining these functions. This design allows individual components to be tested independently and improves code readability through self-explanatory function names (calculate_ provides results for specific time point, but create_dataset_ for all time points). The parameter naming conventions were also simplified. In addition, the graphical user interface was rewritten from scratch using Shiny modules to ensure clear separation and encapsulation of features.

Puchała, Weronika, Michał Burdukiewicz, Michał Kistowski, Katarzyna A. Dąbrowska, Aleksandra E. Badaczewska-Dawid, Dominik Cysewski, and Michał Dadlez. 2020. HaDeX: An R Package and Web-Server for Analysis of Data from Hydrogen-Deuterium Exchange Mass Spectrometry Experiments.” Bioinformatics (Oxford, England) 36 (16): 4516–18. https://doi.org/10.1093/bioinformatics/btaa587.